

USB Communication Interface

(Rev. 04, 10-2015)

Table of Contents

L	JSB Communication Interface1				
	Table of Contents	2			
	1 Installation				
	2 Input Commands and answer messages				
	2.1 Input Commands				
	2.2 Answer messages				
	2.3 Commands & Answers description Table				
	2.4 Error Message				
	3 Annex 1: FTD2XX.DLL Dynamic Library				
	D2XX Driver Architecture				
	DLL Functions				
	4 Examples and Notes	14			

1 Installation

Connect the **PCPLUG** electronics through the USB port to the host PC.

Include in your Code the FTD2XX.DLL Dynamic Library (described in Annex 1) in order to write your application.

2 Input Commands and answer messages

When the **PCPLUG** receives a valid input command, it confirms to the host device that the command has been received and return the answer as follows.

2.1 Input Commands

The format of a valid command is as follow:

*COMMANDNAME_NUMERICALVALUE:

where:

"*": Start of command

":": End of command

"_": space character

COMMANDNAME: the instruction as described in the following table; it is an ASCII character sequence. The command name must be in capitals.

2.2 Answer messages

PCPLUG device sends a message through USB interface only if it has received an Input Command from the Host Device.

Maximum response time from **PCPLUG** is ~100msec. Therefore set a delay of 100ms between write and read function to wait for device reply.

The format of an answer is as follow:

ANSWER;

where:

";": End of answer

ANSWER: there are three kind of answer

String: ASCII character sequence

Int: integer number, numerical sequence (in ASCII code)

Float: floating point number, numerical sequence plus decimal point (in ASCII code); ex. the NumericValue 23.45 is codified with the 5 ASCII characters "23.45".

2.3 Commands & Answers description Table

Command Name	Description	Answer
HEADN	Displays the Head model	String 8 char
SERNU	Displays the Head serial number	Int 6 digit
WSENS	Displays Head sensibility (mV/W)	Float 3int.5dec
PMSEW	Displays maximum power value the Head can withstand (W)	Float 5int.1dec
LAMBDA	Displays selected wavelength:	Int 1-5
CFWL1	Displays the spectral correction coefficient L1	Float 2int.3dec
CFWL2	Displays the spectral correction coefficient L2	Float 2int.3dec
CFWL3	Displays the spectral correction coefficient L3	Float 2int.3dec
CFWL4	Displays the spectral correction coefficient L4	Float 2int.3dec
CFWL5	Displays the spectral correction coefficient L5	Float 2int.3dec
NOML1	Displays L1 Label	String 3 char
NOML2	Displays L2 Label	String 3 char
NOML3	Displays L3 Label	String 3 char
NOML4	Displays L4 Label	String 3 char
NOML5	Displays L5 Label	String 3 char
SETLAM1	Select spectral correction coefficient L1	"ok"
SETLAM2	Select spectral correction coefficient L2	"ok"
SETLAM3	Select spectral correction coefficient L3	"ok"
SETLAM4	Select spectral correction coefficient L4	"ok"
SETLAM5	Select spectral correction coefficient L5	"ok"
PNOMW	Displays Head nominal power (W)	Float 5int.1dec
ZERO	zeroing PCPLUG	"ok"
OUTPM	Displays measured power(W)	Float (VISCA
		formatted)
TEMP	Displays Head temperature x 10 (°C)	Int 3 digit
VISCA	Displays measured value's format mode: 0, 1, 2: W for power 3, 4, 5: mW for power	Int 1 digit
	0-3: no decimal point (ex. 10 W) 1-4: one decimal number (ex. 10.3 W) 2-5: two decimal number (ex. 10.35 W)	
STATUS	Displays condition byte: bit 0: arm/zeroing done; (1) yes, (0) no bit 1: measure running; (1) yes, (0) no bit 2: Head connected; (1) yes, (0) no bit 3: cool alarm running; (1) yes, (0) no bit 4: wait before start a new measure; (1) yes bit 5:not used; default value (0) bit 6: overflow alarm; (1) yes, (0) no	Int 3 digit
C) I	bit 7: termistor connected; (1) yes, (0) no	0 1
SN	Displays electronic board serial number	String 6 char

SETX10	Set x1 electronic amplifier gain	"ok"
SETX1 1	Set x10 electronic amplifier gain	"ok"
X1D	Displays electronic gain set up:	Int 1 digit
	0: x1 gain	C C
	1: x10 gain	
FHV	Displays firmware & Hardware versions	"HA"+1 char
		+"FR" + 2 char
EPOWER	Set PCPLUG in Power Meter Mode	"ok" if properly
		selected
		"nov" if not
		selected
ENERGY	Set PCPLUG in Energy Meter Mode (if	"ok" if properly
	available)	selected
	<i>'</i>	"nov" if not
		selected

2.4 Error Message

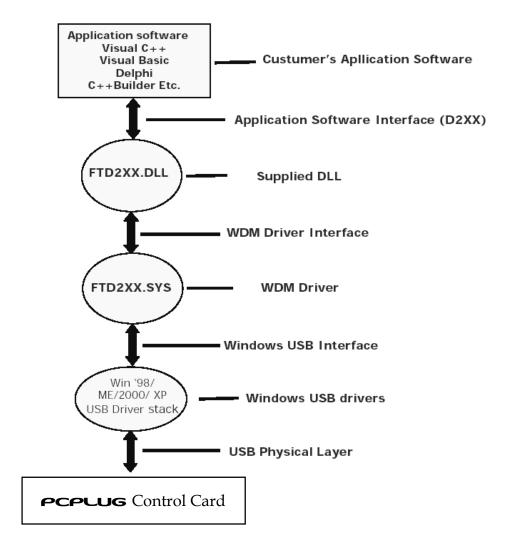
the following error message may be sent by the **PCPLUG** if a communication error occurs: ??; where:

??: USB communication error

";": End of answer

An error message may be sent for the following error conditions:

Input command not started with * character


Input command does not correspond with the command list

Input command not in capitals

3 Annex 1: FTD2XX.DLL Dynamic Library

The FTD2XX.DLL Dynamic Library for Windows allows you to write your application. The architecture of the FTD2XX.DLL drivers consists of a Windows WDM driver that communicates with the device via the Windows USB Stack and a DLL which interfaces the Application Software (written in VC++, C++ Builder, Delphi, VB etc.) to the WDM driver. The FTD2XX.DLL interface provides a simple, easy to use, set of functions to access perpus control card.

D2XX Driver Architecture

DLL Functions

FT_ListDevices

Description Gets information concerning the devices currently connected. This function can return such information as the number of devices connected, and device strings such as serial number and product description.

Syntax FT STATUS FT_ListDevices (PVOID pvArg1, PVOID pvArg2, DWORD dwFlags)

Parameters

pvArg1 meaning depend on the dwFlags value (see note below)pvArg2 meaning depend on the dwFlags value (see note below)dwFlags Determines format of returned information (see note below)

Return Value FT_OK if successful, otherwise the return value is an FT error code

Note Remarks This function can be used in a number of ways to return different types of information.

In its simplest form, it can be used to return the number of devices currently connected. If FT_LIST_NUMBER_ONLY bit is set in dwFlags, the parameter pvArg1 is interpreted as a pointer to a DWORD location to store the number of devices currently connected.

It can be used to return device string information. If

FT_OPEN_BY_SERIAL_NUMBER bit is set in dwFlags, the serial number string will be returned from this function. If FT_OPEN_BY_DESCRIPTION bit is set in dwFlags, the product description string will be returned from this function. If neither of these bits is set, the serial number string will be returned by default. It can be used to return device string information for a single device. If FT_LIST_BY_INDEX bit is set in dwFlags, the parameter pvArg1 is interpreted as the index of the device, and the parameter pvArg2 is interpreted as a pointer to a buffer to contain the appropriate string. Indexes are zerobased, and the error code FT_DEVICE_NOT_FOUND is returned for an invalid index

It can be used to return device string information for all connected devices. If FT_LIST_ALL bit is set in dwFlags, the parameter pvArg1 is interpreted as a pointer to an array of pointers to buffers to contain the appropriate strings, and the parameter pvArg2 is interpreted as a pointer to a DWORD location to store the number of devices currently connected. Note that, for pvArg1, the last entry in the array of pointers to buffers should be a NULL pointer so the array will contain one more location than the number of devices connected.

FT_Open

Description Opens the device and return a handle which will be used for subsequent accesses.

Syntax FT STATUS **FT_Open** (int *iDevice*, FT HANDLE *ftHandle)

Parameters

iDevice indicates the number of the device to be opened. Must be 0 if only one device is attached. For multiple devices 1, 2 etc. *ftHandle* Pointer to a variable of type FT_HANDLE where the handle will be stored. This handle must be used to access the device.

Return Value FT OK if successful, otherwise the return value is an FT error code

Note Although this function can be used to open multiple devices by setting iDevice to

0, 1, 2 etc. there is no ability to open a specific device. To open named devices, use the function **FT_OpenEx**. With the **FT_OpenEx** function (not described in this user manual) it is possible to open a device also trough its *serial number* or trough its description. For further information, please contact **LASERPOINT.srl**.

FT_Close

Description Closes the communication with a open device.

Syntax FT STATUS **FT_Close** (FT HANDLE *ftHandle*)

Parametres

ftHandle pointer to the communication handle of the device to close.

Return Value FT_OK if successful, otherwise the return value is an FT error code

FT_Read

Description Reads a string from the device.

Syntax FT_STATUS **FT_Read** (FT_HANDLE *ftHandle*, LPVOID *lpBuffer*, DWORD *dwBytesToRead*, LPDWORD *lpdwBytesReturned*)

Parameters

ftHandle pointer to the communication handle of the device to read. IpBuffer pointer to the buffer that receives the data from the device. DwBytesToRead Number of bytes to be read from the device. IpdwBytesReturned Pointer to a variable of type DWORD which receives the number of bytes read from the device.

Return Value FT_OK if successful, FT_IO_ERROR otherwise.

Note FT Read always returns the number of bytes read in IpdwBytesReturned. This function does not return until dwBytesToRead have been read into the buffer. The number of bytes in the receive queue can be determined by calling FT GetStatus or FT GetQueueStatus, and passed to FT Read as dwBytesToRead so that the function reads the device and returns immediately. When a read timeout value has been specified in a previous call to FT_SetTimeouts, FT_Read returns when the timer expires or dwBytesToRead have been read, whichever occurs first. If the timeout occurred, FT_Read reads available data into the buffer and returns FT_OK. An application should use the function return value and IpdwBytesReturned when processing the buffer. If the return value is FT_OK, and IpdwBytesReturned is equal to dwBytesToRead then FT_Read has completed normally. If the return value is FT_OK, and IpdwBytesReturned is less then dwBytesToRead then a timeout has occurred, and the read has been partially completed. Note that if a timeout occurred and no data was read, the return value is still FT OK. A return value of FT_IO_ERROR suggests an error in the parameters of the function, or a fatal error like USB disconnect has occurred.

FT_Write

Description Writes a string to the device.

Syntax FT_STATUS **FT_Write** (FT_HANDLE *ftHandle*, LPVOID *lpBuffer*, DWORD *dwBytesToWrite*, LPDWORD *lpdwBytesWritten*)

Parameters

ftHandle pointer to the communication *handle* of the device to write. **IpBuffer** pointer to the buffer which contains the bytes to be written in the

device.

DwBytesToWrite number of bytes to write to the device.

IpdwBytesWritten pointer to a variable of type DWORD which receives the number of bytes written to the device

Return Value FT_OK if successful, otherwise the return value is an FT error code.

FT_ResetDevice

Description Sends a Reset command to the device.

Syntax FT_STATUS **FT_ResetDevice** (FT_HANDLE *ftHandle*)

Parameters

ftHandle pointer to the communication handle of the device to reset .

Return Value FT OK if successful, otherwise the return value is an FT error code.

FT_SetBaudRate

Description Sets the baudrate for the device.

Syntax FT_STATUS **FT_SetBaudRate** (FT_HANDLE *ftHandle*, DWORD *dwBaudRate*)

Parameters

FtHandle pointer to the communication *handle* of the device to set out. **dwBaudRate** value of the *baudrate* to set out.

Return Value FT_OK if successful, otherwise the return value is an FT error code.

Note: PCPLUG Baud Rate value is: 9600.

FT_SetDataCharacteristics

Description Sets the data characteristics for the device.

Syntax FT_STATUS **FT_SetDataCharacteristics** (FT_HANDLE *ftHandle*, UCHAR *uWordLength*, UCHAR *uStopBits*, UCHAR *uParity*)

Parameters

ftHandle pointer to the communication handle of the device to set out .

uWordLength number of bits per word. It must set as FT_BITS_8 (in the case of 8 bit schosen) or as FT_BITS_7 (in the case of 7 bits chosen).

uStopBits number of stop bits. It must set as FT_STOP_BITS_1 (when one stop bit is requested) or as FT_STOP_BITS_2 (when two stop bits are requested).

uParity number of parity bits. It must set as FT_PARITY_NONE (no parity bit) or as FT_PARITY_ODD (parity bit is odd) or as FT_PARITY_EVEN (parity bit is even) or as FT_PARITY_MARK (always high parity bit) or as FT_PARITY_SPACE (always low parity bit).

Return Value FT_OK if successful, otherwise the return value is an FT error code.

Note: for **PCPLUG** the DataCharacteristics must be set as FT_DATA_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE.

FT_SetFlowControl

Description Sets the flow control the chip serial communication of chip USB/RS232.

Syntax FT_STATUS **FT_SetDataCharacteristics** (FT_HANDLE *ftHandle*, USHORT *usFlowControl*, UCHAR *uXon*, UCHAR *uXoff*)

Parameters

FtHandle pointer to the communication *handle* of the device to set out. **usFlowControl** set the kind of flow control. It must be set as FT_FLOW_NONE (no flow control) or as FT_FLOW_RTS_CTS (hardware RTS/CTS flow control) or as FT_FLOW_DTR_DSR (hardware DTR/DSR flow control) or as FT_FLOW_XON_XOFF (software XON/XOFF flow control) **uXon** shows the character uses as Xon signal. It must be set only when the flow control is **software** XON/XOFF kind (otherwise, it must be set as zero).

uXoff shows the character uses as Xoff signal. It must be set only when the flow control is *software* XON/XOFF kind (otherwise, it must be set as zero).

Return Value FT_OK if successful, otherwise the return value is an FT error code.

Note: for pcplug the FlowControl must be set as FT_FLOW_NONE

FT_SetDTR

Description Sets the Data Terminal Ready (DTR) control signal. (Data Terminal Ready).

Syntax FT STATUS FT_SetDTR (FT HANDLE ftHandle)

Parameters

ftHandle pointer to the communication handle of the DTR device to set out.

Return Value FT OK if successful, otherwise the return value is an FT error code.

FT_CIrDTR

Description This function clears the Data Terminal Ready (DTR) control signal (*Data Terminal Ready*).

Syntax FT_STATUS **FT_CIrDTR** (FT_HANDLE *ftHandle*)

Parameters

ftHandle pointer to the communication handle of the DTR device to set out.

Return Value FT_OK if successful, otherwise the return value is an FT error code.

FT_SetRTS

Description Sets the Request To Send (RTS) control signal. (Request To Send).

Syntax FT_STATUS FT_SetDTR (FT_HANDLE ftHandle)

Parameters

ftHandle pointer to the communication handle of the RTS device to set out.

Return Value FT OK if successful, otherwise the return value is an FT error code.

FT_CIrRTS

Description Clears the Request To Send (RTS) control signal (Request To Send).

Syntax FT STATUS FT_SetDTR (FT HANDLE ftHandle)

Parameters

FtHandle pointer to the communication handle of the RTS device to set out.

Return Value FT_OK if successful, otherwise the return value is an FT error code.

FT_SetTimeouts

Description Sets the read and write timeouts for the device.

Syntax FT_STATUS **FT_SetBaudRate** (FT_HANDLE *ftHandle*, DWORD *dwReadTimeout*, DWORD *dwWriteTimeout*)

Parameters

FtHandle pointer to the communication *handle* of the device to set out . **dwReadTimeout** value of the Read timeout, in milliseconds, to set out. **dwWriteTimeout** value of the Write timeout, in milliseconds, to set out.

Return Value FT OK if successful, otherwise the return value is an FT error code.

FT GetQueueStatus

Description Shows the number of characters in the receive queue.

Syntax FT_STATUS **FT_GetQueueStatus** (FT_HANDLE *ftHandle*, LPDWORD *lpdwAmountInRxQueue*)

Parameters

FtHandle pointer to the communication *handle* of the device to set out . **IpdwAmountInRxQueue** Pointer to a variable of type DWORD which receives the number of characters in the receive queue.

Return Value FT_OK if successful, otherwise the return value is an FT error code.

FT GetStatus

Description Shows the device status including number of characters in the receive queue, number of characters in the transmit queue, and the current event status.

Syntax FT_STATUS **FT_GetStatus** (FT_HANDLE *ftHandle*, LPDWORD *lpdwAmountlnRxQueue*, LPDWORD *lpdwAmountlnTxQueue*, LPDWORD *lpdwEventstatus*)

Parameters

ftHandle pointer to the communication *handle* of the device to set out .

IpdwAmountInRxQueu Pointer to a variable of type DWORD which receives the number of characters in the receive queue.

LpdwAmountInTxQueue Pointer to a variable of type DWORD which receives the number of characters in the transmit queue.

IpdwEventstatus Pointer to a variable of type DWORD which receives the current state of the event status.

Return Value FT_OK if successful, otherwise the return value is an FT error code.

Error codes

```
FT_OK = 0
FT_INVALID_HANDLE = 1
FT_DEVICE_NOT_FOUND = 2
FT_DEVICE_NOT_OPENED = 3
FT_IO_ERROR = 4
FT_INSUFFICIENT_RESOURCES = 5
FT_INVALID_PARAMETER = 6
FT_INVALID_BAUD_RATE = 7
FT_DEVICE_NOT_OPENED_FOR_ERASE = 8
FT_DEVICE_NOT_OPENED_FOR_WRITE = 9
FT_FAILED_TO_WRITE_DEVICE = 10
FT_EEPROM_READ_FAILED = 11
FT_EEPROM_WRITE_FAILED = 12
FT_EEPROM_ERASE_FAILED = 13
FT_EEPROM_NOT_PRESENT = 14
FT_EEPROM_NOT_PROGRAMMED = 15
FT_INVALID_ARGS = 16
```

4 Examples and Notes

EXAMPLE 1

Here below are reported some examples of the main steps necessary to start the communication with a **PCPLUG** device with FTDXXX functions. The programming language for this example is VB.NET.

```
'Get the number of the connected FTDI devices:
FT_Status = FT_GetNumberOfDevices(NumDevicesConnected, vbNullChar, FT_LIST_NUMBER_ONLY)
Browse all the connected FTDI devices to find Laserpoint Plus 2 device
'1 Get the device description
FT_Status = FT_GetDeviceString(i, Description, FT_LIST_BY_INDEX Or FT_OPEN_BY_DESCRIPTION)
'2 Shrink the description returned as 64 chars string to the correct number of chars.
                      " --> "Pc-Plua"
Description = Microsoft.VisualBasic.Left(Description, InStr(1, Description, vbNullChar) - 1)
NOTE: Description of Laserpoint PCPLUG device is "Pc-Plug"
Get the serial number of Laserpoint device using the description
'Get serial number of device using index i
FT_Status = FT_GetDeviceString(i, Serial, FT_LIST_BY_INDEX Or FT_OPEN_BY_SERIAL_NUMBER)
'Shrink the description from 64 chars to the correct number of chars.
'Ex: "123456
                     "--> "123456"
Serial = Microsoft. Visual Basic. Left (Serial, InStr(1, Serial, vbNullChar) - 1)
Open communication with device identified by its serial number. Function will return a communication Handle which will
'be used for all the following communications
FT_Status = FT_OpenBySerialNumber(Serial, FT_OPEN_BY_SERIAL_NUMBER, COM_Handle)
'Setting communication parameters
FT_Status = FT_SetBaudRate(COM_Handle, 9600)
FT_Status = FT_SetDataCharacteristics(COM_Handle, FT_DATA_BITS_8, FT_STOP_BITS_1, FT_PARITY_NONE)
FT_Status = FT_SetFlowControl(COM_Handle, FT_FLOW_NONE, 0, 0)
FT_Status = FT_SetTimeouts(COM_Handle, 500, 100)
FT_Status = FT_Purge(COM_Handle, FT_PURGE_RX Or FT_PURGE_TX)
'Read and write to serial port
FT_Status = FT_Write_String(COM_Handle, "*COMMAND:", 9, byteswritten)
'Set a delay of 100ms between write and read function to wait for device to reply
System. Threading. Thread. Sleep (100)
' Read the response from the device
FT_Status = FT_GetQueueStatus(COM_Handle, RXBytes)
ReadString = Space(RXBytes)
FT_Status = FT_Read_String(COM_Handle, ReadString, RXBytes, bytesread)
```

EXAMPLE 2

Here is reported an example of **PCPLUG** commands correct sequence to get an energy measure.

Command	Answer	Comment
SETLAM2	ok	To select the wavelength 2
CFWL2	0.98	To check the correction coefficient of this wavelength (this is a multiply factor. So if it is = 0, it means that this wavelength is not activated)
ENERGY	ok	To switch the PcPlug to "ENERGY mode" measure
STATUS	4 (=0000100)	Getting the status byte. As expected it's received a "no" (=0) on bit number 0. That's because the instrument has not been zeroed/armed yet
ZERO	ok	Zeroing the PcPlug
STATUS	5 (=0000101)	Getting the status byte. Now the bit number 0 is a "yes" (=1). PcPlug is ready to measure.
shot	a single pulse with	laser
STATUS	6 (=0000110)	The measure is running (this status lasts 1-2 seconds usually)
STATUS	20 (=0010100)	Getting the status string (repeated) It's received a "Wait before to start new measure" many times (this status may last from 5 up to 50 seconds depending on sensor head)
ОИТРМ	1.65	Asked and received the energy measured (Joules) (NOTE: this value is available from the moment the "measure running" stops to be 1, and will be available until a new measure or zero will run)
STATUS	5 (=0000101)	PcPlug is ready to measure again

5 Useful Links

For a complete list and description of FTDXXX functions, please download the "FTD2XX Programmer's Guide" at this FTDI website link:

http://www.ftdichip.com/Support/Documents/ProgramGuides.htm

To download the right libraries for your Operative System / architecture please check this section of FTDI website:

http://www.ftdichip.com/Drivers/D2XX.htm

For software examples with different programming languages please check this section: http://www.ftdichip.com/Support/SoftwareExamples/CodeExamples.htm